Integral equations, large and small forcing functions: Periodicity
نویسندگان
چکیده
منابع مشابه
Integral equations, large and small forcing functions: Periodicity
The defining property of an integral equation with resolvent R(t, s) is the relation between a(t) and ∫ t 0 R(t, s)a(s)ds for functions a(t) in a given vector space. We study the behavior of a solution of an integral equation x(t) = a1(t) + a2(t) − ∫ t 0 C(t, s)x(s)ds when a1(t) is periodic, C(t+ T, s+ T ) = C(t, s), while a2(t) is typified by (t+ 1) β with 0 < β < 1. There is a resolvent, R(t,...
متن کاملPeriodicity Forcing Words
The Dual Post Correspondence Problem asks, for a given word α, if there exists a non-periodic morphism g and an arbitrary morphism h such that g(α) = h(α). Thus α satisfies the Dual PCP if and only if it belongs to a non-trivial equality set. Words which do not satisfy the Dual PCP are called periodicity forcing, and are important to the study of word equations, equality sets and ambiguity of m...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولPhase functions as solutions of integral equations
A phase function is an important characteristic of a scattering medium. A method to derive new analytic phase functions is proposed. The relation between a phase function and an angle-averaged single-scattering intensity, derived earlier [M. L. Shendeleva, J. Opt. Soc. Am. A 30, 2169 (2013)], is considered as an integral equation for a phase function. This equation is classified as an Abel inte...
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2007
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2006.09.020